从一到无穷大(新版)_【美】乔治·伽莫夫_AZW3_MOBI_EPUB_PDF_电子书(无页码)_【美】乔治·伽莫夫

内容节选

第四章四维的世界 1.第四维——时间 第四维度的概念常招致很多神秘说和怀疑说的声音。作为只拥有长、宽、高而生于三维空间,长于三维空间的生物,我们又怎敢言及四维空间之事?是否存在这样的可能:利用我们所有的三维智慧去想象建构出一个四维的超空间?那么一个四维的立方体或是球体会是什么样子的?当我们说“想象”一条长着鳞状尾巴和火焰从鼻孔流出的巨龙,或者一架超级客机,机翼上有一个游泳池和几个网球场,你实际上是在脑海中描绘出它突然出现在你面前的样子。 若这就是“想象”这个字眼的含义,那么要在普通三维空间的基础上想象出一个四维度的形体就是不可能的,这跟将三维形体挤压入二维平面一样,都是天方夜谭。但也请少安毋躁,因为从某种意义上说,我们的确可以经由画画而将三维物体“挤压进”二维平面。但无论如何,在完成这项工作的时候,我们都不借助液压机或者任何的其他物理压力,而只采用大家熟知的几何“投影”或阴影构建方式。 仔细观察图17,你马上就能看出将物体(如一匹马)挤压进一个二维平面的两种方式之间的异同。 图17 将三维物体“挤压进”二维平面的错误之法及正确之道 进行类比之后,我们可以说,尽管将四维物体完全“挤”进三维空间而没有些微突出是不可能的,但我们却可在仅有三维的空间中畅言各种四维形体之“投影”。而必须谨记于心的是,四维超形体在我们这个普通三维空间中的投影会是立体的空间形状,这跟三维形体在二维平面上的投影为二维或平面形状是一样的道理。 图18 二维生物满是惊讶地盯着三维立方体投射到自己身上的影子亦即自己也正不停地在探究一个四维形体投射在自己所处空间中的影子。更为确切地说,图19给出的是四维超立方体在我们的三维空间的投影转而又投射于纸上或是其他二维平面上的投影。——作者注 为使问题脉络更为清晰,让我们先思考一下:生活在平面上的二维影子生物是如何建构出三维立方体的概念的。其实,我们很容易就可以想象出来,因为我们作为更具优势的三维存在,可以从第三个角度观察、研究整个二维的世界。图18中所展示的就是通过“投影”将立方体“挤压”进二维平面的唯一方法。观看这样一个投影以及其他各种可经由原始立方体旋转得到的投影,我们的二维“伙伴们”将至少会对那名叫“三维立方体”的神秘形体之间的适当联系产生某种看法。他们虽不能像我们一样“跳出”自己所处的平面来观察立方体,但只要看着投影,他们就可以,例如,说出这个立方体有8个顶点和12条棱。现在我们来看图19,那些可怜的二维影子生物此刻正不停地探究一个普通的立方体投射在它们平面上的影子,你会发现自己跟它们一样,也正处于同样的境地 。事实上,图中让这一家子目露惊色的奇异结构体正是一个四维超立方体投射在我们习以为常的三维空间中的影子 。 图19 四维超立方体的直线投影。四维空间访客!一个四维超立方体的正投影 请仔细观察这幅图,你可以很容易地辨认出图中有些特征跟图15中那惯于迷惑人的影子生物一模一样:平面上的一个普通立方体其投影经由两个正方形呈现出来,它们两两相套,顶点相接;而超立方体在普通三维空间中的投影则由两个立方体构成,且两个立方体也是通过同样的顶点相连形式而相互嵌套在一起的。经过数算之后,你会很容易发现一个超立方体共有16个顶点、32条棱和24个面。就是一个立方体,不是吗? 现在让我们来看看所谓的四维球体是什么样子的。我们首先需要做的是将视线转向更为熟悉的情况上来,因为我们要探讨的是一个普通球体在平面上的投影问题。举一个例子,比如,有一个透明的地球,其表面上标有陆地和海洋,此刻正被投射在一面白色的墙壁上(图20)。当然,在投影中两个半球无可避免会重叠在一起,而通过观察投影,我们可能会觉得美国纽约跟中国北京之间的距离十分短。但那真的只是一个错觉而已。 图20 地球的平面投影 事实上,位于这幅投影上的每个点代表的是实际球体上截然相反的两个点,而一架自纽约飞往中国的客机在地球表面的投影则会一路沿着平面投影的边移动,然后再以同样的方式全程退回来。尽管图片所显示的两条航线之投影可能是重合在一起的,但在实际的飞行过程中,只要它们是位于地球的两端,那么就绝不会发生飞机相撞的情况。 这就是一般球体的平面投影属性。现在,让我们的想象力更开阔一点,我们就能毫不费力地看到一个四维超球体在三维空间中形成的投影。这与由两个扁平光盘(点对点)放在一起,而只靠外围连接组成的普通球体所投射出的影像一样,超球体的空间投射一定会被想象成两个球形物体相互穿过并沿着它们的外表相连形成的图形。而实际上,在前面的章节中,我们已经探讨过这类特殊的结构,当时提到的是一个闭合的三维空间,作为类似于闭合球体表面的例子而提出的。因此,我们还需要做出的补充是,说白了,四维球体的三维投影就是我们先前讨论中提到过的那两个孪生苹果——两个常见的苹果沿整个外皮黏合在一起。 以同样类比的方式,我们......

  1. 信息
  2. 第一版作者序言
  3. 1961年版作者序言
  4. 第一部分 数字游戏
  5. 第一章 大数字
  6. 第二章 自然数和人工数
  7. 第二部分 空间、时间与爱因斯坦
  8. 第三章 空间的独特性
  9. 第四章 四维的世界
  10. 第五章 时空的相对性
  11. 第三部分 微观世界
  12. 第六章 下降的阶梯
  13. 第七章 现代炼金术
  14. 第八章 无序定律
  15. 第九章 生命之谜
  16. 第四部分 宏观世界
  17. 第十章 拓宽视野
  18. 第十一章 初创之日